Nitinol for Medical Devices

Fundamentals of Shape Memory

- **Nitinol Processing**
- **Design and Application**
 - Where is Nitinol Used?
 - **Medical Device Characteristics**
 - **Design Case Studies**
- **Environmental Effects**

Applications of Nitinol

- 1970 First aircraft applications
- 1975 Orthodontic arches first superelastic application
- 1980 Guidewires
- 1985 Instrument components
- 1990 Stents

Constrained Recovery

Actuators

Actuators

Grado Zero Espace S.l.r.

Thermal Actuation

Dr. Charles Dotter

Biomechanical Compatibility

Elastic Deployment

Thermal Deployment

Kink Resistance

Constancy of Stress

Dynamic Interference

Hysteresis / Biased Stiffness

Fatigue Resistance

Biocompatibility

MR Compatibility

MR Compatibility

Guidewires

Elastic Deployment Kink Resistance Fatigue Resistance Biocompatibility MR Compatibility

SMA, Inc.

Bone Reamers

Kink Resistance Fatigue Resistance Biocompatibility MR Compatibility

Zimmer

Needle/Wire Localizer

Homer Mammalok® (Mitek)

RF Tissue Ablation

RITA Medical Systems, Inc.

Baskets

Elastic Deployment Kink Resistance Dynamic Interference Fatigue Resistance Biocompatibility MR Compatibility

Organ Retrieval

Elastic Deployment Kink Resistance Fatigue Resistance Biocompatibility MR Compatibility

Covidien

Snares

Elastic Deployment Kink Resistance Dynamic Interference Fatigue Resistance Biocompatibility MR Compatibility

Embolic Protection Devices

Abbott

Elastic Deployment Kink Resistance Dynamic Interference Fatigue Resistance Biocompatibility MR Compatibility

Deflectable Instruments

Flexible Micrograsper

Elastic Deployment Kink Resistance Fatigue Resistance Biocompatibility MR Compatibility

Heart Valve Sizer

Deformable Martensite Fatigue Resistance Biocompatibility

St. Jude

Vascular Closure Devices

Perclose

Abbott

Elastic Deployment Kink Resistance Fatigue Resistance Biocompatibility

Suture Anchor

Biomechanical Compatibility Elastic Deployment Biocompatibility MR Compatibility

25

Bone Staples

Biomechanical Compatibility Thermal Deployment Fatigue Resistance Biocompatibility MR Compatibility

BME, Inc.

Spinal Cage

Depuy Spine

Biomechanical Compatibility Elastic Deployment Biocompatibility MR Compatibility

Septal Occlusion

AGA Medical

Biomechanical Compatibility Elastic Deployment Biocompatibility MR Compatibility

Vena Cava Filters

C.R. Bard

Stents use a wide range of properties

Biomechanical Compatibility Elastic or Thermal Deployment Kink Resistance Constancy of Stress Dynamic Interference Hysteresis / Biased Stiffness (COF and Crush Resistance) Fatigue Resistance Biocompatibility MR Compatibility

Neuro Carotid Esophagus Coronary Trachea Biliary Aorta "The human body is a lliac Colon series of tubes just waiting to be stented" Femoral **Urinary Tract** Dr. Paul S. Teirstein, 1998 Popliteal

31

Coil Stents Woven Wire Stents "Wiggle Wire" Stents "Slotted Tube" Stents

Abbott

Medtronic

Design: Case Studies of Engineering Challenges of Selected Nitinol Medical Devices

Case Study 1: Homer Mammalok

$A_{\rm f} = -10^{\circ} {\rm C}, 14^{\circ} {\rm C}, 27^{\circ} {\rm C}$

Challenge: Determine the Effect of A_f on Deployment Stress and Strain

Effect of A_f on Tensile Properties

FEA of Hook Retraction

FEA Strain Distribution

 $\delta A_f = T_T - A_f$

FEA Stress Distribution

 $\delta A_f = T_T - A_f$

Case Study 2: Stents

Challenges: Determine stresses and strains during loading and deployment Optimize *in vivo* forces

Loading into the Catheter

Chronic Outward Force

Radial Resistive Force (RRF)

Stress and Strain Analysis

Stress - Strain Distribution

Radial Force Testing

Is there an ideal A_f for a stent? What are the effects of A_f ?