四

DEVELOPMENT OF MAGNETORHEOLOGICAL FLUID FOR RUNNING SHOES WITH AN ACTIVE DAMPING SYSTEM

F. Mastrandrea ${ }^{1}$, G. Franceschini ${ }^{1}$, V. Carnevali ${ }^{1}$, J.M. Kenny ${ }^{\mathbf{2}}$ and A. Iannoni ${ }^{2}$
${ }^{1}$ Industrial Engineering Department, ${ }^{2}$ Civil and Environmental Engineering Department, Perugia University, Italy

Impact Force During Running

I impact peak

II active peak

- Vertical force due by muscle activity

Damping in the sport shoes

-EVA (copolymeric rubber: Ethyl Vinyl Acetate) More soft and most used -PU (puliuretan) or TPU More elastic

Pressures exchanged between heel pad and

EVA duration

- after 100 km pressure peak raising of 100%

Other cushioning systems
 \section*{Passive}

systems

- Air cushioning (Nike Air, DMX Reebok)
-Silicone gel (Asics, Diadora)

Active system

-2005 Adidas " 1 "
-20 Mhz processor
-effect hall sensor (precision
$0,1 \mathrm{~m}$)
-stiffness range 150\%

Semi-active damping system using magnetorheological fluid

MRF change the apparent viscosity if exposed to a magnetic field

semi-active damping system

Main components of the MR fluids

Approximately to obtain 100 ml of MRF:

- 50 g synthetic oil $(23,8 \%)$
- 10 g lithium white grease (4,76\%)
- 150 g iron powder ($71,54 \%$)

Density $=\mathbf{2 , 1} \mathbf{~ k g} / \mathrm{liter}$

Rheometer description tests

- STRAIN SWEEP at 25° C, frequency 1 Hz
-ISOTHERM at $25^{\circ} \mathrm{C}$: frequency 1 Hz , strain 1,5 and total time 3 minutes
-DYNAMIC from $25{ }^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, speed step $2^{\circ} \mathrm{C} /$ minute, frequency 1 Hz ,

Oils

Brooksfield rheometer

Grease and MR fluid Ares rheometer

Oils

-Shell Helix Plus 5W-40 mPa*sec
-Ford 75W-90 BO mPa*sec

- Castrol ForkOil SAE 20W
-Castrol ForkOil SAE 10W
- LubroFluid 18
-WD 40

Viscosity measured with Brookfield rheometer.

Conditons: $\mathbf{7 0 0} \mathbf{~ m l}$ a $25^{\circ} \mathrm{C}$ (regulation) rotor 1

154,1

130, 2

132,8 mPa*sec 26,04 mPa*sec 23,04 mPa*sec 4,50 mPa*sec

Lithium white

STRAIN SWEEP_GRASSO ${ }_{\text {ISOTHERRMN } 2526^{\circ}-70^{\circ} \mathrm{C} @ 2^{\circ} \mathrm{C} / \mathrm{min}}$

Carbonyl Iron Powder

-Datasheet:

- Mesh (diameter) micron
-Effective density $7,5 \mathrm{~g} / \mathrm{ccm}$
-Apparent density 1,7-2,7 g/ccm

On the left we can see iron powder oxidized, on the right Carbonyl iron

FMR ford $50+10$

Ford oil (BO 75W-90)

10 g of White Lithium Grease

Energy storage modulus G', energy loss modulus $\mathrm{G}^{\prime \prime}$ and viscosity Eta* in function of frequency with two different currents $\mathrm{I}=0 \mathrm{~A}$ and $\mathrm{I}=0,1 \mathrm{~A}$
frequency sw eep $0.1 @ 100$ at $30^{\circ} \mathrm{C}$

FMR-Ford 50+10

Ratio Magnetic

eld/Vi	GOgs	
Current	field	Pcosity
A	KA/m	Pa's
0	0.745*	49,5
0.1	10.4	112.2
0.2	18.1	347

ETA* rises from 49.5 to 347 Pa's (7 times) with only 0.2 A step
*residual magnetization

Comparison between Ford 50+*0 ()and comr■Ércial MR Iord ()

Main MR shoes components

Algorithm
Unit logic
MR fluid
Input

4 effect hall sensors
4 Magnetic Micro coils
Strain based (displacement, derivative)
40 Mhz Programmable PIC
4 pistons connected with pipes

Outp
Power system

Basic layout of the Magnetorheological shoes

Possible applications

- Sport (running, basket, jump, etc..)
- Medical (shoes for diabetic, pronation, supination)
- Military
- Work Safety (low frequency attenuator)

Future Tasks

Short

 term -Cushioning test -Power system-Control algorithms

Medium term

-Mathematical model of the shoes
-Fem Model of the shoes

Long term

-Prototyp
e

Aknowledgements

- Industrial Engineering Department, University of Perugia, Perugia (Italy)

-European Center of Nanostructured Polymers (ECNP), Material Science Department, University of Perugia, Terni (Italy)

-Grado Zero Espace s.r.I., Empoli (Italy)

